
Citation: Koh, Y.; Kang, S.; Lee, S.

Deep Learning-Based Bug Report

Summarization Using Sentence

Significance Factors. Appl. Sci. 2022,

12, 5854. https://doi.org/10.3390/

app12125854

Academic Editor: Douglas

O’Shaughnessy

Received: 16 March 2022

Accepted: 6 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep Learning-Based Bug Report Summarization Using
Sentence Significance Factors
Youngji Koh 1, Sungwon Kang 1 and Seonah Lee 2,3,*

1 School of Computing, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehakro,
Daejeon 34141, Korea; youngji@kaist.ac.kr (Y.K.); sungwon.kang@kaist.ac.kr (S.K.)

2 Department of Aerospace and Software Engineering, Gyeongsang National University, 201 Jinjudaero,
Jinju-si 52828, Korea

3 Department of AI Convergence Engineering, Gyeongsang National University, 201 Jinjudaero,
Jinju-si 52828, Korea

* Correspondence: saleese@gnu.ac.kr; Tel.: +82-55-772-1377

Abstract: During the maintenance phase of software development, bug reports provide important
information for software developers. Developers share information, discuss bugs, and fix associated
bugs through bug reports; however, bug reports often include complex and long discussions, and
developers have difficulty obtaining the desired information. To address this issue, researchers
proposed methods for summarizing bug reports; however, to select relevant sentences, existing
methods rely solely on word frequencies or other factors that are dependent on the characteristics
of a bug report, failing to produce high-quality summaries or resulting in limited applicability. In
this paper, we propose a deep-learning-based bug report summarization method using sentence
significance factors. When conducting experiments over a public dataset using believability, sentence-
to-sentence cohesion, and topic association as sentence significance factors, the results show that
our method outperforms the state-of-the-art method BugSum with respect to precision, recall, and
F-score and that the application scope of the proposed method is wider than that of BugSum.

Keywords: bug report; bug tracking system; data-based software engineering; text summarization;
open source software; sentence significance factor; software maintenance

1. Introduction

Bug reports are an essential resource for long-term maintenance of software systems.
Developers share information, discuss bugs, and fix associated bugs through bug reports [1].
Bug reports are managed by using bug tracking systems such as Trac and Bugzilla. Figure 1
shows an example of a bug report posted on the Bugzilla platform. As shown in Figure 1,
the bug report contains a detailed description of the bug and a list of comments that contain
the developers’ discussion on how to reproduce or how to fix the bug. Bug reports are
structured in the form of public posts with discussion sections similar to posts of social
websites [2]. Because bug reports are written in the form of discussions among many
people, developers often spend much time perusing lengthy bug reports and encounter
difficulty obtaining the desired information.

To address these problems, various studies [3–10] have proposed methods for sum-
marizing bug reports; however, most existing methods relied on either training data [3] or
word frequencies [4], failing to produce high-quality summaries. As a method that utilizes
information about the relationships among sentences in bug reports, Liu et al. [5] applied
sentence believability to summarize bug reports. They considered that the discussions in bug
reports are cross-validated among different developers who express their own opinions
(i.e., evaluation behaviors) to evaluate others’ comments. Comments in a bug report are
either supported or disapproved by others. Liu et al. [5] showed that using believability
scores can improve the quality of bug report summaries; however, for bug reports that

Appl. Sci. 2022, 12, 5854. https://doi.org/10.3390/app12125854 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12125854
https://doi.org/10.3390/app12125854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7947-8741
https://orcid.org/0000-0002-2004-2924
https://doi.org/10.3390/app12125854
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12125854?type=check_update&version=2

Appl. Sci. 2022, 12, 5854 2 of 19

do not contain such evaluated sentences, it is difficult to assign believability scores to
sentences; therefore, the effect of their method is limited to the bug reports that contain
evaluated sentences. To measure the importance of all sentences, Koh et al. [10] combined
sentence believability score [5] with the TextRank-based text ranking score [11]; however,
their approach is limited to the combination of two existing methods [5,11].

Figure 1. Example of a bug report.

In this paper, we propose a deep-learning-based bug report summarization method
that utilizes the notion of sentence significance factors, where a sentence significance factor
is a criterion for identifying important sentences. The main idea behind our proposed

Appl. Sci. 2022, 12, 5854 3 of 19

method is that users can obtain high-quality summaries without limiting the applicability
by determining a suitable set of sentence significance factors and their weights for the
target bug report.

We evaluate the proposed method with two datasets using three sentence significance
factors: sentence-to-sentence cohesion, topic association, and believability. The experi-
mental results show that our proposed method outperforms the state-of-the-art method of
BugSum [5] with respect to precision, recall, and F-score and that the application scope of
the proposed method is wider than that of BugSum [5].

The contributions of this paper are presented as follow: First, we proposed a compre-
hensive deep-learning-based bug report summarization method that encompasses diverse
sentence significance factors. Second, we compared the proposed method with the state-of-
the-art method BugSum with two benchmark datasets and showed that our comprehensive
method that uses three sentence significance factors yields a better result than the result of
BugSum and that our method works even when BugSum does not work.

This paper is organized as follows: Section 2 introduces existing studies related to bug
report summarization. Section 3 describes our proposed method. Sections 4 and 5 evaluate
the proposed method. Section 6 discusses threats to validity and implications of our study.
Section 7 concludes our work and discusses future research challenges.

2. Related Work

Text summarization techniques can be classified into the abstractive approach and
the extractive approach. Abstractive summarization generates a summary by using new
phrases and sentences that may not appear in the original text. Extractive summarization
organizes a summary by extracting a paragraph or sentence from the original text. Bug
report summarization has been extensively studied in the direction of extractive summa-
rization. The extractive summarization approach is highly relevant to this paper and is
discussed in detail in the remainder of this section.

Rastkar et al. [6] proposed a bug report summarization method based on a super-
vised learning technique. They applied minutes and email tread summarization meth-
ods to bug reports, considering that bug reports are typically written in a dialog format.
Rastkar et al. [6] prepared a handwritten summary of 36 bug reports for training and eval-
uation. Jiang et al. [7] confirmed that duplicated bug reports have textual similarity with
original bug reports, and based on this relationship, proposed a bug report summarization
method using the PageRank algorithm. They combined the method of Rastkar et al. [6]
with the PageRank-based summarization method to improve the quality of bug report
summaries. Additionally, they created new OSCAR data containing duplicated bug reports.
Rastkar et al. [6] and Jiang et al. [7] trained the summarizer using the summaries that
they created; however, in these studies, the quality of a summary is heavily dependent
on training data, which requires annotators to exert massive manual efforts to create the
training data.

Although many supervised-learning-based methods have been adopted, unsupervised-
learning-based methods have been employed to avoid massive efforts for manually label
data. Lotufo et al. [8] proposed a graph-based, unsupervised, summarization method
that mimics human reading behaviors. They simulated human reading patterns to score
sentences, connected the sentences according to similarities, and chose the sentences with
the highest possibilities of being reached while randomly moving between two sentences.
Li et al. [9] proposed an unsupervised, learning-based, summarization method using deep
learning. They focused on predefined words and sentence types and scored sentences
based on the weights of words; however, existing unsupervised approaches are sensitive to
word frequency [4,9] and are likely to include redundant sentences that represent a similar
topic in the summary, which would produce biased results.

Appl. Sci. 2022, 12, 5854 4 of 19

Liu et al. [5] proposed a deep-learning-based, unsupervised, summarization method
that measures the sentence believability score. They considered that bug reports contain
evaluation behaviors, which are positive or negative opinions in the form of comments.
They defined a sentence that evaluates a specific sentence as an evaluator sentence and a
specific sentence that is evaluated by other sentences as an evaluated sentence. They assigned
positive or negative weights to the evaluated sentences by other evaluator sentences. Based on
the weights, they computed believability scores and improved summarization performance.
Liu et al. [5] found that 28.5% of the 31,155 bug reports do not contain evaluation behaviors.
In addition, in the case of bug reports with evaluation behaviors, the evaluated sentences
comprised only 36.4% of the sentences on average. Thus, for bug reports that do not
contain evaluation behaviors or bug reports that contain them only for a few sentences,
their method will not work well.

Kiyoumarsi [12] summarized the document using many features at the sentence-
based level, such as the sentence length, sentence position, sentence-to-sentence cohesion,
and similarity to title. For example, similarity to title is calculated by comparing all the
sentences of the document against the title of the document. They used a machine learning
method based on these features to summarize documents; however, if a deep learning
algorithm with sufficient relevant data were utilized, the summary quality would have
been improved. Bug reports also contain sentence significance factors (e.g., sentence-to-
sentence cohesion and similarity to title), which can be applied to increase the summary
performance for bug reports that do not contain evaluation behaviors.

Koh et al. [10] proposed combining Liu et al.’s [5] sentence believability score with the
TextRank-based text ranking score to measure the degree to which a sentence is important
to generate high-quality summaries; however, they only focused on measuring sentence
importance without considering how comprehensively the summary preserves the domain
features of a bug report. In this paper, our method extracts domain features from a bug
report and selects sentences that comprehensively preserve the domain features of a bug
report. They also considered a few methods to measure sentence importance.

In this paper, we extend the existing methods [5,10] by considering sentence signifi-
cance factors. The similarity between our study and the previous studies is that our study
adopts the existing sentence significance factors (e.g., believability score [5]). The difference
between our study and the previous studies is that, while one of the previous studies
suggested a combination of two factors [10], our study devises an additional factor and
suggests a combination of these three factors. In addition, our study systematically exper-
iments with the three factors by changing their weights. In addition, our study reveals
the impact of steps to summary quality by inserting and deleting steps in the experiment.
Finally, our study analyzes the impact of the three factors to an application scope. Our
study suggests a new direction to improve summary quality by combining various sentence
significant factors of bug reports.

3. Proposed Method

An overview of our proposed method is shown in Figure 2. There are four inputs to our
method. The first input is a bug report to be summarized, denoted as BR. The second input
is a list of sentence significance factors, and the third input is a list of weights for the sentence
significance factors. The fourth input is the length of the output summary. The output from
our method is a summary of the bug report to be denoted as Selected_Summary.

Appl. Sci. 2022, 12, 5854 5 of 19

Input 2: A list of sentence
significance factors

𝑭𝒂𝒄𝒕𝒐𝒓𝒌

1. Bug Report Preprocessing

2. Sentence Feature Extraction

5. Candidate Summaries
Generation

Input 1: A bug report
BR

Sentences

FSentence vectors

4. Sentence Assessment
Scores Calculation

Sentence
Assessment Scores

Output: The summary of
the input bug report
Selected_Summary

Work flow

Data flow

Activity

Data

Start

End

3. Sentence Significance
Factors Assessment

Factors Assessment
Results

Input 3: A list of weights for
sentence significance factors

𝜶𝒌

7. Feature Preservation

Candidate_Summaries

Input 4: A length of the
output summary

6.Filtering with Summary
Length

Filtered_
Candidate_Summaries

Figure 2. Overview of the proposed method.

3.1. Sentence Significance Factors

The extractive-based, text summarization approach that selects sentences of high
relevance or importance for summaries is based on employing a set of factors to generate
coherent summaries that state the main idea of the given document [13]. Many factors have
been proposed for automatic extractive text summarization by various researchers [5,12,13].
These factors include mean-TF-ISF, which is TF-IDF applied to a single document, sentence
length, sentence position, similarity to title, similarity to keywords, sentence-to-sentence
cohesion, etc. Since the quality of a generated summary is highly dependent on the selected
factors, our method relies on the notion of sentence significance factors so that the user of the
method can select the most relevant and important factors that determine the significance
of sentences.

In our proposed method, the sentence significance factors are sentence believability,
sentence-to-sentence cohesion, and topic association. For example, for the sentence “Firefox
currently supports a wide number of stand alone e-mail applications (including its own
Thunderbird client), when an e-mail link is clicked on in Firefox”, the sentence believability
score is zero if no sentence evaluates this sentence. The sentence-to-sentence cohesion score
is 0.06, which is calculated using the text ranking algorithm. The topic association score is
0.88, which indicates the similarity between this sentence and the title.

Appl. Sci. 2022, 12, 5854 6 of 19

3.2. Steps of the Proposed Method

Our proposed method consists of seven steps. In the first step, our method prepro-
cesses a bug report and removes the noise contained in the bug report. In the second
step, domain features are extracted from preprocessed sentences as vectors. In the third
step, sentences are assessed with sentence significance factors. In the fourth step, sentence
assessment scores are calculated. In the fifth step, candidate summaries are generated.
In the sixth step, candidate summaries that are 30% of the length of the bug report are
selected. In the seventh step, a summary that best preserves domain features from bug
reports is selected.

The following subsections separately explain the steps of our proposed method.

3.2.1. Bug Report Preprocessing

Bug reports are real-world data that contain considerable noise [14]. Since data that
contain noise do not produce accurate results, removing noise from data is necessary;
therefore, first, code snippets and stack traces are removed. Second, bug reports are divided
into sentences based on punctuation marks, and each sentence is tokenized following the
software-specific regular expression [7]. Last, stop words are removed [15] and Porter
stemming [16,17] is performed.

The output from this step is a list of preprocessed sentences. Assuming that the length
of the list is n, we denote each sentence by sentence i, 1 ≤ i ≤ n.

3.2.2. Sentence Feature Extraction

To extract domain features from sentences, an autoencoder network is employed.
The basic principle of the autoencoder is illustrated in Figure 3. An auto-encoder consists
of encoders and decoders. Each sentence is encoded to a latent vector, and then the latent
vector is decoded to reconstruct the input sentence. The autoencoder is trained for the
reconstructed sentence to be consistent with the input. The latent vector is considered a
sentence vector that expresses the domain features of the sentence. The output from this
step is a list of sentence vectors. The sentence vector of sentence i is denoted by Si.

Latent vector (𝒛)

Input
sentence (𝒙)

Reconstructed
sentence (𝒙#)

Encode Decode

Figure 3. Structure of autoencoder.

3.2.3. Sentence Significance Factor Assessment

The second input to the proposed method is a list of sentence significance factors
denoted by < Factor1, . . . , Factorm > when m is the number of sentence significance factors
considered. To use these factors, metric Mk should be defined for each Factork, 1 ≤ k ≤ m.

In Step 3, for each sentence vector Si, each sentence significance factor
Factork, 1 ≤ k ≤ m, is evaluated using Mk. Mk (Factork (Si)) represents the score mea-
sured with Mk for Factork, 1 ≤ k ≤ m, for the sentence vector Si, 1 ≤ i ≤ n. For example, we
could define the metric Mk for Factork as:

Mk(Factork(Si)) =

1 + ∑

j∈R(Si)

f (Si, Sj) if |R(Si)| > 0

1, if |R(Si)| = 0
(1)

Appl. Sci. 2022, 12, 5854 7 of 19

where R(Si) is the set of sentences in the input bug report that are related to sentence R(Si)
in a certain way R and f (Si, Sj) is the value for the way Si is related to sentence Sj.

3.2.4. Sentence Assessment Score Calculation

The third input is a list of weights for sentence significance factors denoted as < α1,
. . . , αm > such that αk is the weight for the sentence significance factor Factork.

The sentence assessment score of sentence vector Si is denoted by SAscorei and is
calculated as follows.

SAscorei =
m

∑
k=1

ak ×Mk(Factork(Si)) (2)

where m is the number of input sentence significance factors, and αk, 1 ≤ k ≤ m, is a weight
value between 0 and 1 such that the sum of αk, 1≤ k≤ m, is 1. The closer αk is to 1, the more
important αk is.

3.2.5. Candidate Summary Generation

For each bug report, Liu et al. [5] defined the notion of a full document vector to
represent the domain features of the bug report BR. The full document vector is obtained
by taking the sentence assessment scores as weights and summing the weighted average
of the sentence vectors. The full document vector of bug report BR is denoted as DF and
calculated as follows.

DF =
n

∑
i=1

SAScorei × Si (3)

Therefore, DF represents the domain features of a bug report, as it combines the
domain features of all the sentences with sentence assessment scores.

Candidate_Summaries is a set of candidate summaries, where a candidate summary,
denoted as CS, is a set consisting of selected sentences from a bug report. CS, a candidate
summary in Candidate_Summaries, which was obtained from Step 5, is applied to reconstruct
the full document vector DF, denoted as D̃F.

D̃F = ∑
i∈CS

SAScorei × Si (4)

3.2.6. Filtering with Summary Length

An input to this step is the length of the output summary, which is input 4 in our
method. Previous studies have selected 25% to 30% of the length of a bug report for
the best length of its summary [11] and widely utilized it in various existing bug report
summarization methods [6,8]. In this paper, we use 30% of the length of a bug report as the
most appropriate length of a summary. It means that our method select 30% of sentences in
a bug report; however, our method will still work in the same way with a different value
for the most appropriate length of a summary.

Therefore, in this step, first, a subset of Candidate_Summaries, to be denoted as Fil-
tered_Candidate_ Summaries, is generated such that the subset contains the CSs, whose
length is approximately 30% the length of the bug report.

3.2.7. Feature Preservation

In addition, a good summary should preserve the domain features of a full document
as comprehensively as possible. To measure the degree to which a summary preserves
domain features, we use reconstruction loss [5], denoted as δ, which is the number of
features that exist in the bug report but do not exist in a summary; it is calculated as follows:

δ = |MSE(DF, D̃F)| (5)

Appl. Sci. 2022, 12, 5854 8 of 19

In Equation (5), the mean squared error, denoted as MSE, between DF and D̃F is
calculated using the following equation:

MSE =
∑d

i=1(yi − ỹi)
2

d
(6)

where d is the dimension of the feature vector and yi and ỹi are the vector components of
DF and D̃F, respectively.

The rationale for Equation (5) is that the closer D̃F is to DF, the more domain features
of the bug report are contained in candidate summary CS, i.e., the closer δ is to 0, the more
comprehensively CS summarizes the given bug report.

From the subset of Candidate_Summaries that contain the CSs whose lengths are ap-
proximately 30% the length of the bug report, the candidate summary with the minimum
value of δ is selected as Selected_Summary.

4. Experimental Setup

Section 4.1 lists the research questions. Section 4.2 describes the experimental sub-
jects. Section 4.3 explains the implementation of the proposed method for experiments.
Section 4.4 selects sentence significance factors to be utilized for experiments and defines
their metrics. Section 4.5 explains the designs of the experiments to answer the research
questions. Section 4.6 defines the metrics to be used for evaluation of the proposed method.

4.1. Research Questions

To evaluate our method, we ask the following research questions:
RQ1. Does our proposed method of using sentence significance factors yield higher

summary quality (i.e., F1-score) than that of BugSum?
There are two related research questions that we investigate to understand the aspects

that affect summary quality:
RQ2. How do sentence significance factor assessments and feature preservation

influence summary quality?
RQ3. How does summary quality change as the length of a summary changes?
As a consequence of its generality, our method has a wider applicability than BugSum,

which relies on just believability. The following research question compares our method
and BugSum in this respect.

RQ4. Is the application scope of our proposed method wider than that of the state-of-
the-art method BugSum?

4.2. Experimental Subjects

We evaluate the proposed method over two popular benchmark datasets, i.e., Sum-
mary Dataset (SDS) [6] and Authorship Dataset (ADS) [18], consisting of 36 bug reports
and 96 bug reports, respectively. Each bug report in the datasets is annotated by three
annotators to ensure quality. The annotators were asked to summarize the report in ap-
proximately 25% of the length of the bug report using their own words. They were also
asked to link each sentence in their summary to one or more sentences in the original bug
report. For each bug report, the set of sentences linked by at least two annotators is referred
to as the gold standard summary (GSS) [6].

4.3. Implementation of Our Method for Experiments

For the experiments, we implemented the proposed method using the existing tools
for Steps 2, 3, and 7.

To implement Step 2 of our method, we employed an autoencoder network to extract
domain features from preprocessed sentences as vectors. Liu et al. [5] used a bidirectional
gated recurrent unit (Bi-GRU) as the encoder and decoder unit to capture the forward and
backward context information of each sentence. Bi-GRU consists of a forward GRU and a

Appl. Sci. 2022, 12, 5854 9 of 19

backward GRU. They also train the autoencoder based on 31,155 bug reports. The proposed
method uses trained autoencoders based on the method in [5].

To implement Step 3 of our method, we implemented the Sentence-to-Sentence Cohe-
sion Assessment component and Topic Association Assessment component and applied
the existing Sentence Believability Assessment component from [5].

To implement Step 6 of our method, we utilized the beam search algorithm to select
the optimal CS, a candidate summary. It is extremely inefficient to evaluate all possible CS.
We can significantly reduce the time and effort of evaluating all possible CS using the beam
search algorithm while still ensuring a good quality summary and while maintaining the
comprehensiveness of the bug report.

The beam search algorithm explores all candidate summaries by expanding the top-k
promising choices, where k means beam size. Figure 4 shows how to generate a summary
using beam search algorithms. For example, the bug report contains 4 sentences, and the
dimension of the feature vector is 2. Each sentence vector can be denoted as S1 = [0, 1],
S2 = [2, 0], S3 = [0, 2], and S4 = [3, 0]. Assuming that all of the sentence vectors have the
same sentence assessment scores, which is 1, the full document vector is DF = [5, 3] based
on Equation (3). When S1 is in the CS, the reconstructed full document vector is calculated
as D̃F = [0, 1] based on Equation (4). The reconstruction loss δ between two vectors is also
calculated as 14.5 based on Equations (5) and (6). If the beam size is 2, only two nodes that
have the lowest value of δ are expanded. Initially, the CS that contains S2 or S4 is selected.
In the next step, similarly, the two candidate summaries, i.e., [S1, S4] and [S3, S4], are newly
selected. The final CS with the lowest value of δ is selected as a summary and denoted as
Selected_Summary.

𝑆!				[2, 0]

[]
Selected Sentences

Loss : 17

[𝑆!]
Loss : 14.5

[𝑺𝟐]
Loss : 9

[𝑆#]
Loss : 13

[𝑺𝟒]
Loss : 6.5

𝑆"				[0, 1]

𝑆#				[0, 2]

𝑆$				[3, 0]

[𝑆!, 𝑆%]
Loss : 6.5

[𝑆%, 𝑆#]
Loss : 5

[𝑆%, 𝑆&]
Loss : 4.5

[𝑺𝟏, 𝑺𝟒]
Loss : 4

[𝑺𝟑, 𝑺𝟒]
Loss : 2.5

Lowest Reconstruction Loss

Figure 4. Process of the beam search algorithm.

4.4. Sentence Significance Factors Determination

In this experiment, three sentence significance factors are selected to evaluate the
importance of a sentence: sentence believability, sentence-to-sentence cohesion, and topic
association, which is similar to the title used in [12].

Considering that bug reports are mostly the form of a conversation, the factor based
on sentence believability applied in [5] is promising; however, using sentence believabil-
ity alone will have limitations in the scope of applicable bug reports because some bug
reports have no sentences evaluated that are necessary to measure sentence believability.
To augment the sentence believability factor, we select sentence-to-sentence cohesion and
similarity to title, among the many candidates for sentence significance factors that we listed
in Section 3.1, because they are commonly employed in general text summarization [12].
In addition, they reflect the following characteristics of a bug report: that everyone is
free to comment, that the title summarizes the bug, and that irrelevant comments can be

Appl. Sci. 2022, 12, 5854 10 of 19

contained since many people freely write comments. In this case, the cohesion of a sentence
is important for summarizing a bug report. Additionally, the title of a bug report implies
the key point of the bug to its readers.

4.4.1. Sentence Believability Assessment

Sentence believability is computed based on evaluation behaviors. An evaluated
sentence is assigned a believability score depending on the evaluator sentences. If an
evaluator sentence gives a positive opinion about the evaluated sentence, this sentence is
significant. The believability score of sentence i is denoted as Bscorei.

Bscorei =

1 + ∑
j∈EAdji

Bscorej ×OPscorej if |EAdji| > 0

1, if |EAdji| = 0
(7)

Bscorei is calculated as shown in Equation (7). A set of evaluator sentences that
evaluate sentence i is denoted as EAdji. If sentence i is not evaluated by any other sentence,
the believability score of this sentence is 1; however, if sentence j evaluates sentence i,
the believability score is calculated using its evaluator sentences in EAdji.

The opinion score, denoted as OPscorej, assesses the opinion of the evaluator sentence
j toward the evaluated sentence i. An opinion score is measured using a support vector
machine (SVM) classifier, which is a model pretrained with the dataset in [5]. The SVM
classifier takes as input a sentence and predicts the probability that a negative opinion is
expressed with a value between 0 and 1.

In this experiment, believability scores are calculated using the same dataset and the
same SVM classifier that Liu et al. employed in [5] (https://github.com/HaoranLiu14/
BugSum, accessed on 1 March 2022). Liu et al. trained the SVM classifier on a dataset con-
taining 3000 sentences, which were collected from 31,155 bug reports and manually labeled.

4.4.2. Sentence-to-Sentence Cohesion Assessment

Sentence-to-sentence cohesion is computed using the TextRank algorithm [17], which
assumes that a sentence similar to other sentences is a significant sentence.

To apply the TextRank algorithm, there is a need to build a graph using bug reports.
The algorithm considers each sentence as a vertex and takes the similarity between two
sentences as the weight of an edge. The values of all nodes are computed using the
TextRank algorithm; however, the TextRank algorithm has limitations in that it cannot
capture the entire meaning of a sentence because it computes a value only through the
word frequencies.

Our method uses a TextRank algorithm based on sentence embedding [19] to capture
the meaning of a sentence. First, the method computes the cosine similarity between two
sentence vectors created in Step 2. The cosine similarity between two sentence vectors
becomes the weight of an edge. Second, the TextRank algorithm is applied to calculate
the value of each sentence. The TextRank value of sentence i is denoted as Cscorei and is
calculated as shown in Equation (8)

Cscorei = (1− d) + d× ∑
Vj∈In(Vi)

wji

∑Vk∈Out(Vj)
× Cscorej (8)

For a given vertex Vi, In(Vi) is the set of vertices that point to vertex Vi, and Out(Vi) is
the set of vertices to which vertex Vi points. The weight of the edge between two vertices
Vi and Vj is denoted wi j. A damping factor, which is denoted as d, is the probability of
jumping from a given vertex to another random vertex in the graph. This factor is usually
set to 0.85 [20]; we also use this value in our implementation.

The sentence is given an initial value of 1. The TextRank algorithm is run on the
graph for several iterations until the TextRank value converges. The larger the number of

https://github.com/HaoranLiu14/BugSum
https://github.com/HaoranLiu14/BugSum

Appl. Sci. 2022, 12, 5854 11 of 19

sentences is with a similar meaning, the more important a sentence is, and the higher the
TextRank value of the sentence.

4.4.3. Topic Association Assessment

Topic association is computed through the similarity of sentences to the title of a bug
report. Titles typically reflect the key idea of a full document or at least contain words
or phrases that are key to the topics; therefore, sentences closely related to the title are
important enough to be included in the summary.

To evaluate the semantic closeness of each sentence with respect to its title, the sim-
ilarity of the bug report’s title and each sentence is computed by the cosine similarity
measure [21], as shown in Equation (9). The cosine similarity of sentence i and the title
is denoted as Tscorei. The cosine similarity between the title and the sentence is calcu-
lated as follows, where A and B are the n-dimensional vectors representing a title and a
sentence, respectively.

CosineSimilarity = A·B
‖A‖‖B‖ =

∑n
i=1 Ai×Bi√

∑n
i=1(Ai)2×

√
∑n

i=1(Bi)2
(9)

4.5. Experimental Design
4.5.1. Experiment for RQ1

To show the performance improvement of the proposed method, we compared our
method with BugSum [5] on SDS and ADS.

4.5.2. Experiment for RQ2

The proposed method uses two steps that affect the accuracy of bug report summa-
rization: sentence significance factor assessment in Step 3 and feature preservation in
Step 7.

The sentence significance factors to be assessed in our method are sentence-to-sentence
believability, sentence cohesion, and topic association. For feature preservation, we use the
beam search algorithm, which will select the final output summary Selected_Summary. To an-
alyze the effects of these two steps on the summary quality, we conducted two experiments.

In the first experiment, we analyzed the summary quality changes resulting from the
selection of two steps. We intended to investigate whether each step actually contributes
to summary quality improvement. If the step for feature preservation is excluded and the
beam search algorithm does not apply, we selected the top 30% sentences with the highest
sentence assessment scores.

In the second experiment, we identified the optimal weights to calculate the sentence
assessment scores in Step 4 and analyze the summary quality changes based on the three
sentence significant factors. Each factor is represented as a percentage. If the weight is 0,
the corresponding assessment is skipped. When experimenting with only two of the three
sentence significance factors, we determined the optimal weights by increasing the weights
by 0.25. When experimenting with all three sentence significance factors, we determined
the optimal weights by increasing the weights by 0.1.

4.5.3. Experiment for RQ3

An experiment was conducted to analyze the performance for various summary
lengths. We generated a summary from 10% to 50% of the length of the bug report and
analyzed the trend of summary quality as the summary length changes.

4.5.4. Experiment for RQ4

To evaluate whether our proposed method works even when BugSum [5] does not
work because evaluated sentences do not exist in bug reports, we conducted an experiment
as follows:

Appl. Sci. 2022, 12, 5854 12 of 19

In the SDS, 13 of 36 bug reports do not have evaluated sentences. In the ADS, 50
of 96 bug reports do not have evaluated sentences. If there are evaluated sentences in a
bug report, both BugSum [5] and our method can be applied; however, even if evaluated
sentences do not exist in a bug report, our method still works, but BugSum will not work
well. To confirm this point, we conduct an experiment with bug reports that do not have
evaluated sentences. In the experiment, we compare summary quality using believability
for Bugsum and the three sentence significance factors for our method, without using the
beam search algorithm in both methods, to focus on the effects of the two methods where
there are no evaluated sentences in the bug report.

4.6. Metrics

To evaluate the performance of bug report summarization methods, we used three
metrics—precision, recall, and F1 score—which are commonly employed to measure the
accuracy of bug report summaries. These metrics are calculated from the set of selected
sentences denoted as Chosen and the set of the gold standard summary denoted as GSS.
The metrics are expressed as follows:

Precision =
|Chosen∩GSS|
|Chosen| (10)

Recall =
|Chosen∩GSS|

|GSS| (11)

F1 score =
2× Precision× Recall

Precision + Recall
(12)

Especially, for RQ1, we measure the performance of bur report summarization by
using ROUGE-1. ROUSE-1 calculates how many words are overlapped between Chosen
and GSS. The metric is expressed as follows, where x and y represent words.

ROUGE-1 =
|{x|x ∈ Chosen∩ x ∈ GSS}|

|{y|y ∈ GSS}| (13)

5. Experimental Results

In this section, we analyze the evaluation results of the proposed method for each
research question.

5.1. RQ1

Table 1 shows the precision, recall, and F1-score when the bug reports in the SDS are
summarized, and Table 2 shows the precision, recall, and F1-score when the bug reports in
the ADS are summarized.

Table 1. Quality comparison of summarizing bug reports in the SDS.

Precision Recall F1 Score

BugSum 0.501 0.429 0.442
Proposed Method 0.525 0.449 0.463

Table 2. Quality comparison of summarizing bug reports in the ADS.

Precision Recall F1 Score

BugSum 0.506 0.507 0.475
Proposed Method 0.534 0.535 0.502

Our method outperforms BugSum [5] by approximately 2% in terms of the precision,
recall, and F1 score on the SDS. Our method also outperforms the ADS by approximately

Appl. Sci. 2022, 12, 5854 13 of 19

3%. When we calculate p-value from a t-test on the SDS, the proposed method is not
statistically significant compared to BugSum (p > 0.05). When we calculate p-value from a
t-test on the ADS, the proposed method is statistically significant compared to BugSum
(p < 0.05). This means that, if we consider two datasets together, our proposed method
will show its statistical significance, because of the increased size of samples; therefore, we
interpret these results as indicating that additional factors, sentence-to-sentence cohesion,
and topic association are useful.

Since the scores in the tables are around 0.5, one might think that a purely random coin-
flipping approach would yield similar results; however, we remind that approximately
25% of the sentences in a bug report are included in GSS (see Section 4.2) and 30% of
the sentences are selected automatically by both BugSum and our proposed method (see
Section 3.2.6). We simulated the random cases. Our simulator randomly selected 25 out of
100 numbers as GSS, and randomly selected 30 out of 100 numbers again. We calculated
precision, recall, and F1 scores from the result. We repeated the simulation 1000 times and
averaged precision, recall, and F1 scores. The averaged precision score is 0.245, the averaged
recall score is 0.294, and the averaged F1 score is 0.267. Both BugSum and our proposed
method yielded much higher scores than the random selection.

Furthermore, we measured the performance improvement of the proposed method by
using ROUGE-1. Table 3 shows the ROUGE-1 scores of BugSum and our method.

Table 3. Quality comparison of summarizing bug reports in terms of ROUGE-1.

ROUGE-1 for SDS ROUGE-1 for ADS

BugSum 0.44 0.31
Proposed Method 0.47 0.48

Our method yields 3% higher ROUGE-1 score than that of BugSum for the SDS and
17% higher score for the ADS, which clearly shows that our method outperforms BugSum
in terms of the ROUGE-1 score.

RQ1. Our proposed method of using sentence significance factors yields higher F1-score than
that of BugSum by 2.1% on the SDS and 2.7% on the ADS. Our method also yields higher
ROUGE-1 score than that of BugSum by 3% on the SDS and 17% on the ADS.

5.2. RQ2

Table 4 shows the summary quality changes with the SDS and ADS by including and
excluding Steps 3 and 7, as discussed in Section 4.5.2. In Table 4, the sign “×” indicates that
the relevant step is excluded in the method applied, and the sign “X” indicates that the
relevant step is included in the method applied. The experimental results show that the F1
scores are the highest when the proposed method includes Steps 3 and 7. These steps are
useful for summarizing bug reports.

Table 4. Comparison of the effects of steps 3 and 7.

Datasets

Sentence
Significance

Factors
Assessment

Feature
Preservation

(Beam
Search

Algorithm)

Precision Recall F1 Score

× X 0.481 0.414 0.426
SDS X × 0.503 0.458 0.461

X X 0.525 0.449 0.463
× X 0.487 0.486 0.456

ADS X × 0.468 0.527 0.473
X X 0.534 0.535 0.502

Appl. Sci. 2022, 12, 5854 14 of 19

We discover that excluding the step for feature preservation causes a decrease in the
F1 score by 2.9% with the ADS dataset. In contrast, the F1 score decreases by 0.2% on SDS.
It means the step has less impact on the SDS. The reason is that the average number of
sentences per bug report in the ADS is only 39, while the average number of sentences is 65
in the SDS. In these long bug reports, there is sufficient information to generate a summary,
e.g., evaluation behaviors occur more frequently in long bug reports; therefore, bug reports
in SDS are less affected by this step; however, sentence significance factor assessment has
an impact on both the SDS and ADS. For example, the F1 score increases by 3.7% on the
SDS, and the impact on the ADS is 4.6%.

The results show that sentence significance factor assessment and feature preserva-
tion have a positive influence regardless of the dataset, but sentence significance factor
assessment has a greater impact on summary quality than feature preservation.

The second experimental results are shown in Tables 5 and 6. Table 5 shows the impact
of the sentence significance factors on the summary quality on the SDS. The experimental
results show that the summary quality is the lowest when only sentence believability is
applied and is the highest when all three sentence significance factors are applied. The num-
ber of applicable bug reports decreased when only sentence believability is considered,
while more bug reports are subject to summarization when other sentence significance
factors are combined.

Table 5. Impact of sentence significance factors on summary quality on SDS.

Precision Recall F1 Score

Bscore (α1 = 1, α2 = 0, α3 = 0) 0.501 0.429 0.442
Cscore (α1 = 0, α2 = 1, α3 = 0) 0.508 0.436 0.449
Tscore (α1 = 0, α2 = 0, α3 = 1) 0.520 0.444 0.458

Bscore + Cscore (α1 = 0.75, α2 = 0.25, α3 = 0) 0.516 0.441 0.455
Bscore + Tscore (α1 = 0.5, α2 = 0, α3 = 0.5) 0.524 0.447 0.462
Cscore + Tscore (α1 = 0, α2 = 0.5, α3 = 0.5) 0.517 0.442 0.456

Bscore + Cscore + Tscore (α1 = 0.1, α2 = 0.1, α3 = 0.8) 0.525 0.449 0.463

Table 6. Impact of sentence significance factors on summary quality on ADS.

Precision Recall F1 Score

Bscore (α1 = 1, α2 = 0, α3 = 0) 0.506 0.507 0.475
Cscore (α1 = 0, α2 = 1, α3 = 0) 0.503 0.508 0.474
Tscore (α1 = 0, α2 = 0, α3 = 1) 0.522 0.511 0.484

Bscore + Cscore (α1 = 0.75, α2 = 0.25, α3 = 0) 0.523 0.526 0.494
Bscore + Tscore (α1 = 0.75, α2 = 0, α3 = 0.25) 0.530 0.531 0.498
Cscore + Tscore (α1 = 0, α2 = 0.75, α3 = 0.25) 0.522 0.521 0.490

Bscore + Cscore + Tscore (α1 = 0.8, α2 = 0.1, α3 = 0.1) 0.534 0.535 0.502

Table 6 shows the impact of sentence significance factors on the summary quality on
the ADS. The lowest precision and F1 scores are obtained when only sentence-to-sentence
cohesion is utilized, and recall is the lowest when only sentence believability is employed.
The summary quality is the highest when all three sentence significance factors are utilized,
similar to the case of SDS.

RQ2. The steps of sentence significance factor assessment and feature preservation have a
positive influence on summary quality (i.e., F1-score). In the step of sentence significance
factor assessment, the summary quality (i.e., F1-score) is the highest when all three sentence
significance factors are combined.

Appl. Sci. 2022, 12, 5854 15 of 19

5.3. RQ3

Figure 5 shows the experimental results with the SDS. Figure 6 shows the experimental
results with the ADS. The x-axis represents the length of the summary, and the y-axis shows
the values of three metrics: precision, recall, and F1 score.

Figure 5. Summary quality changes with varied summary lengths: SDS dataset.

Figure 6. Summary quality changes with varied summary lengths: ADS dataset.

As a result of the experiment, the precision decreases by approximately 10% as the
length of the summary increases; however, the recall increases to 50%. When the length
of the summary is half that of the bug report, the recall reaches 0.656 and 0.726 with the
SDS and ADS, respectively. The F1 score also increases to 0.504 and 0.519 with the SDS
and ADS, respectively, when the length of the summary statement was 40% of the bug
report. The increase in F1 score is less than 3%, even if the length of the summary further
increases. The proposed method covers more than half of the sentences in the ground truth
summary with only 40% of the length. The proposed method works well with the varied
summary length.

RQ3. Summary quality does not change much when the length of a summary is more than
30% of the length of a report. However, summary quality increases until the length of summary
becomes 40% of the length of a bug report in both the SDS and the ADS.

5.4. RQ4

In SDS and ADS, 64% and 48% of all bug reports contain evaluated sentences, re-
spectively. When bug reports contain evaluated sentences, sentence-to-sentence cohesion

Appl. Sci. 2022, 12, 5854 16 of 19

and topic association are not very useful in improving quality of the summary. In the
case, quality of summary can be improved to some extent only by considering sentence
believability alone. It means that our proposed method could work better than BugSum,
especially when bug reports do not have evaluated sentences.

Tables 7 and 8 show the evaluation results with the bug reports in the SDS and ADS,
respectively, that do not have evaluated sentences. Experimental results show that BugSum
produces low-quality summaries when there are no evaluated sentences. If evaluated
sentences do not exist, all sentences in the bug report have the same believability score of 1;
therefore, BugSum selects sentences until the selected sentences comprise 30% of the length
of the bug report.

We performed random selection in these experiments and obtained the numbers for
BugSum in Tables 7 and 8; however, our proposed method is not affected by the lack of
evaluated sentences and shows higher F1 scores than those of BugSum by 12.4% and 14.2%
with the SDS and ADS, respectively. When we calculate p-value from a t-test on the SDS,
the proposed method is statistically significant compared to BugSum (p < 0.05). The p-value
from a t-test on the ADS is also less than 0.05.

Table 7. Quality comparison of summarizing bug reports with no evaluated sentences in the SDS.

Precision Recall F1 Score

BugSum 0.386 0.298 0.331
Proposed Method 0.542 0.339 0.455

Table 8. Quality comparison of summarizing bug reports with no evaluated sentences in the ADS.

Precision Recall F1 Score

BugSum 0.394 0.397 0.373
Proposed Method 0.532 0.555 0.515

RQ4. When there are no evaluated sentences in bug reports, our proposed method of using
sentence significance factors yields a higher F1-score than that of BugSum by 12.4% on the
SDS and 14.2% on the ADS.

6. Discussion

For our discussion, we investigate one sample and show the relevant confusion matrix
to explain the performance of our proposed method. We also discuss threats to validity
and the implications of our study.

6.1. Confusion Matrix of One Summary Case

Table 9 shows the confusion matrix for the 9th bug report summary results in the SDS
dataset. The bug report consists of a total of 17 sentences. Two columns “Actually positive”
and “Actually negative” indicate whether or not each sentence is selected in a golden
summary, and two rows “Predicted positive” and “Predicted negative” indicate whether or
not each sentence is selected by the proposed method as a summary sentence. As shown
in Table 9, when the proposed method is applied, the precision value (TP/TP + FP) is
generally higher than that of recall (TP/TP + FN). It is because of the percentage of the
sentences that are selected as summary sentences.

Table 9. Confusion matrix of 9th bug report of SDS.

Actually Positive (8) Actually Negative (9)

Predicted Positive (5) True Positive (3) False Positive (2)
Predicted Negative (12) False Negative (8) True Negative (4)

Appl. Sci. 2022, 12, 5854 17 of 19

In the case of the summary sentences of SDS and ADS data, three people selected
the sentences that contain key information in a bug report and then two or more people
had to agree to select sentences as summary sentences; therefore, the percentage of the
summary sentences in a golden summary does not account for 30% of the length of a bug
report. In contrast, the proposed method always selects 30% of the sentences in a bug
report as summary sentences. Due to this difference, the precision is always higher than
recall; therefore, to evaluate the proposed method more accurately, we need to build a more
elaborated experimental data.

6.2. Threats to Validity

In this section, we identify potential threats to the validity of our study.

• Internal validity: The performance difference between our proposed method and Bug-
Sum is not huge; however, the experimental result for RQ2 shows that the difference
comes from the combination of three sentence significance factors. In addition, the ex-
perimental result for RQ4 shows a significant difference between performance of our
proposed method and that of BugSum, based on the bug reports without evaluated
sentences.

• External validity: In our evaluation, we only used two datasets, SDS and ADS. By us-
ing the datasets previously used in other summary methods, we could objectively
evaluate the proposed method; however, we need to evaluate our proposed method
with larger datasets. It is challenging to create large datasets, however, because hu-
mans have to create the golden summaries.

• Construct validity: We regarded the summary quality to be represented by the value
of F1-score. To compensate for this threat, we used a different metric (e.g., ROUGE-1
score) to evaluate summary quality for RQ1.

• Conclusion validity: Although the performance difference between our proposed
method and BugSum in the result of RQ1 is not huge, we showed that the difference
is not a coincidence by showing the result of combining several sentence significance
factors in RQ2. We also analyzed the influence of each step in RQ2.

6.3. Implication

This paper suggests a new direction that considering a combination of various sentence
significance factors will help summarize a bug report more effectively than relying on a
single sentence significance factor. This paper also shows a promising experimental result
in this direction. We expect this study to be a stepping stone to combine several sentence
significance factors for improving summary quality.

Based on our research results, practitioners, researchers, and tool builders can take
the following further actions. First, practitioners can improve the summary quality of a
bug report by referring to the steps in Figure 2 as a framework of utilizing various factors
for improving summary quality. They need to search optimal weights of several sentence
significance factors and combine them according to Equation (2) in this paper. Second,
researchers can conduct further research to find, combine, and test more sentence signifi-
cance factors, because we have limited our evaluation to three sentence significance factors.
Furthermore, since it is already common to adopt an ensemble method for improving clas-
sification accuracy and some adopt an ensemble method for summarization, researchers
can extend this concept and propose an ensemble method for bug summarization. Finally,
tool builders can adopt our method to develop tools for bug summarization. Especially,
they can consider combining several sentence significance factors or combining several
summary techniques.

7. Conclusions

To improve the quality of bug report summaries and extend the scope of bug re-
ports that can be summarized, this paper proposed a deep-learning-based bug report
summarization based on the notion of sentence significance factors. A comparison of the

Appl. Sci. 2022, 12, 5854 18 of 19

state-of-the-art bug report summarization method BugSum with the popular benchmark
datasets, SDS and ADS, and three sentence significance factors, i.e., sentence believability,
sentence-to-sentence cohesion, and topic association, which showed that the proposed
method yields 3% higher summary quality in terms of precision, recall, and F1 score and
approximately 12∼14% higher summary quality when there are no evaluated sentences in
bug reports.

The three sentence significance factors utilized in the evaluation of the proposed
method were selected without considering the characteristics of the summarized bug
reports. If the characteristics of bug reports are considered when determining a set of
sentence significance factors, we believe that the summary quality will greatly improve.
As further research, we will explore the corelationships between the characteristics of bug
reports and sentence significance factors. We also plan to examine how to determine the
optimal weights of sentence significance factors to calculate sentence assessment scores,
and for more accurate experiments, we will build a dataset containing more than 10,000 bug
reports. For the experiments, we utilized an autoencoder to extract the domain features of
sentences since the goal of this paper is not to improve the deep learning algorithm but to
improve the sentence assessment. For more sophisticated summarization, we will also use
bidirected encoder references from transformers (BERT) [22]. In addition, we will consider
performing a qualitative analysis in our future studies.

Author Contributions: Conceptualization, Y.K. and S.L.; methodology, Y.K.; software, Y.K.; vali-
dation, Y.K., S.K. and S.L.; formal analysis, Y.K. and S.K.; investigation, S.L.; resources, Y.K.; data
curation, Y.K.; writing—original draft preparation, Y.K. and S.K.; writing—review and editing, S.L.;
visualization, Y.K.; supervision, S.K.; project administration, S.K. and S.L.; funding acquisition, S.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) grant funded by the Ministry of Education (NRF-
2021R1A2C1094167). This research was also supported by the “Regional Innovation Strategy (RIS)”
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(MOE) (2021RIS-003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Our replication package is publicly available at https://github.com/
youngji-koh/Bug-Report-Summarization-using-SSF (accessed on 9 May 2022).

Acknowledgments: Samal Mukhtar conducted the experiment to measure the performance of
BugSum and our proposed method in terms of ROUGE-1.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SDS Summary Dataset
ADS Authorship Dataset

References
1. Boehm, B.; Rombach, H.D.; Zelkowitz, M.V. Foundations of Empirical Software Engineering: The Legacy of Victor R. Basili; Springer

Science & Business Media: Berlin/Heidelberg, Germany, 2005.
2. Kim, W.; Jeong, O.R.; Lee, S.W. On social Web sites. Inf. Syst. 2010, 35, 215–236. [CrossRef]
3. Rastkar, S.; Murphy, G.C.; Murray, G. Summarizing software artifacts: A case study of bug reports. In Proceedings of the

2010 ACM/IEEE 32nd International Conference on Software Engineering, Cape Town, South Africa, 2–8 May 2010; Volume 1,
pp. 505–514.

4. Radev, D.R.; Jing, H.; Styś, M.; Tam, D. Centroid-based summarization of multiple documents. Inf. Process. Manag. 2004,
40, 919–938. [CrossRef]

https://github.com/youngji-koh/Bug-Report-Summarization-using-SSF
https://github.com/youngji-koh/Bug-Report-Summarization-using-SSF
http://doi.org/10.1016/j.is.2009.08.003
http://dx.doi.org/10.1016/j.ipm.2003.10.006

Appl. Sci. 2022, 12, 5854 19 of 19

5. Liu, H.; Yu, Y.; Li, S.; Guo, Y.; Wang, D.; Mao, X. Bugsum: Deep context understanding for bug report summarization. In
Proceedings of the 28th International Conference on Program Comprehension, Seoul, Korea, 13–15 July 2020; pp. 94–105.

6. Rastkar, S.; Murphy, G.C.; Murray, G. Automatic summarization of bug reports. IEEE Trans. Softw. Eng. 2014, 40, 366–380.
[CrossRef]

7. Jiang, H.; Nazar, N.; Zhang, J.; Zhang, T.; Ren, Z. Prst: A pagerank-based summarization technique for summarizing bug reports
with duplicates. Int. J. Softw. Eng. Knowl. Eng. 2017, 27, 869–896. [CrossRef]

8. Lotufo, R.; Malik, Z.; Czarnecki, K. Modelling the ‘hurried’ bug report reading process to summarize bug reports. Empir. Softw.
Eng. 2015, 20, 516–548. [CrossRef]

9. Li, X.; Jiang, H.; Liu, D.; Ren, Z.; Li, G. Unsupervised deep bug report summarization. In Proceedings of the 2018 IEEE/ACM
26th International Conference on Program Comprehension (ICPC), Gothenburg, Sweden, 27 May–3 June 2018.

10. Koh, Y.; Kang, S.; Lee, S. Bug Report Summarization using Believability Score and Text Ranking. In Proceedings of the 2021
International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Korea, 13–16 April
2021; pp. 117–120.

11. Kim, B.; Kang, S.; Lee, S. A Weighted PageRank-Based Bug Report Summarization Method Using Bug Report Relationships.
Appl. Sci. 2019, 9, 5427. [CrossRef]

12. Kiyoumarsi, F. Evaluation of automatic text summarizations based on human summaries. Procedia-Soc. Behav. Sci. 2015,
192, 83–91. [CrossRef]

13. Qaroush, A.; Farha, I.A.; Ghanem, W.; Washaha, M.; Maali, E. An efficient single document Arabic text summarization using a
combination of statistical and semantic features. J. King Saud Univ.-Comput. Inf. Sci. 2019, 33, 677–692. [CrossRef]

14. Xuan, J.; Jiang, H.; Hu, Y.; Ren, Z.; Zou, W.; Luo, Z.; Wu, X. Towards effective bug triage with software data reduction techniques.
IEEE Trans. Knowl. Data Eng. 2014, 27, 264–280. [CrossRef]

15. Doyle, D. Default English Stopwords List. 2017. Available online: https://www.ranks.nl/stopwords (accessed on 1 March 2022).
16. Porter, M.F. An algorithm for suffix stripping. Program Electron. Libr. Inf. Syst. 1980, 14, 130–137. [CrossRef]
17. Mihalcea, R.; Tarau, P. Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural

Language Processing, Barcelona, Spain, 25–26 July 2004; pp. 404–411.
18. Jiang, H.; Zhang, J.; Ma, H.; Nazar, N.; Ren, Z. Mining authorship characteristics in bug repositories. Sci. China Inf. Sci. 2017,

60, 1–16. [CrossRef]
19. Jeong, S.; Kim, J.; Kim, H. Document Summarization Using TextRank Based on Sentence Embedding. J. KIISE 2019, 3, 285–289.

[CrossRef]
20. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford

InfoLab: Stanford, CA, USA, 1999.
21. Jones, K.S. Automatic summarizing: Factors and directions. In Advances in Automatic Text Summarization; MIT Press: Cambridge,

MA, USA, 1999; pp. 1–12.
22. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.

http://dx.doi.org/10.1109/TSE.2013.2297712
http://dx.doi.org/10.1142/S0218194017500322
http://dx.doi.org/10.1007/s10664-014-9311-2
http://dx.doi.org/10.3390/app9245427
http://dx.doi.org/10.1016/j.sbspro.2015.06.013
http://dx.doi.org/10.1016/j.jksuci.2019.03.010
http://dx.doi.org/10.1109/TKDE.2014.2324590
https://www.ranks.nl/stopwords
http://dx.doi.org/10.1108/eb046814
http://dx.doi.org/10.1007/s11432-014-0372-y
http://dx.doi.org/10.5626/JOK.2019.46.3.285

	Introduction
	Related Work
	Proposed Method
	Sentence Significance Factors
	Steps of the Proposed Method
	Bug Report Preprocessing
	Sentence Feature Extraction
	Sentence Significance Factor Assessment
	Sentence Assessment Score Calculation
	Candidate Summary Generation
	Filtering with Summary Length
	Feature Preservation

	Experimental Setup
	Research Questions
	Experimental Subjects
	Implementation of Our Method for Experiments
	Sentence Significance Factors Determination
	Sentence Believability Assessment
	Sentence-to-Sentence Cohesion Assessment
	Topic Association Assessment

	Experimental Design
	Experiment for RQ1
	Experiment for RQ2
	Experiment for RQ3
	Experiment for RQ4

	Metrics

	Experimental Results
	RQ1
	RQ2
	RQ3
	RQ4

	Discussion
	Confusion Matrix of One Summary Case
	Threats to Validity
	Implication

	Conclusions
	References

